Robust Survey Aggregation with Student-t Distribution and Sparse Representation
نویسندگان
چکیده
Most existing survey aggregation methods assume that the sample data follow Gaussian distribution. However, these methods are sensitive to outliers, due to the thin-tailed property of Gaussian distribution. To address this issue, we propose a robust survey aggregation method based on Student-t distribution and sparse representation. Specifically, we assume that the samples follow Student-t distribution, instead of the common Gaussian distribution. Due to the Student-t distribution, our method is robust to outliers, which can be explained from both Bayesian point of view and non-Bayesian point of view. In addition, inspired by James-Stain estimator (JS) and Compressive Averaging (CAvg), we propose to sparsely represent the global mean vector by an adaptive basis comprising both dataspecific basis and combined generic basis. Theoretically, we prove that JS and CAvg are special cases of our method. Extensive experiments demonstrate that our proposed method achieves significant improvement over the state-of-the-art methods on both synthetic and real datasets.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کامل